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Abstract

3D model reconstruction is one of the most popular di-
rection in computer vision, and single view reconstruc-
tion of piecewise swept scenes, especially in outdoor en-
vrionment, is an interesting and challenging problem. In
this paper, I recurrent effective methods for camera cal-
ibration from vanishing points and pixel-wise 3D model
reconstruction throngh one 2D single-view picture for
architecture in outdoor environment. Then some opti-
mizations and predigestions on reconstruction for mod-
els with regular shape in outdoor environment are imple-
mented to solve the reconstruction tasks more efficiently.

1 Introduction

The reconstruction of 3D models from 2D images is a long
history and interesting problem in computer vision. This
technology can be used in several fields, like video game
modeling, auto-driving, architecture reconstrution and vi-
sualization. The single view reconstruction, as a challeng-
ing problem in reconstruction fields, is highly anticipated
owing to the efficiency, low redundancy and high preci-
sion. How to find effective and precise method to achieve
camera calibration from single view and reconstruct the
3D model through one single 2D projected image are still
hot topics in recent few years.

One effective method for single-view reconstruction is
[1], where the authors present an approach to solve the re-
construction problem by computing the dense orientation
map. As the prerequisite, camera calibration is required
for the valid projection from 3D to 2D and for the gen-
eration of the orientation map. An effective method for
camera calibration is necessary for the rapid reconstruc-
tion. While methods in [2] can handle the problem, the
algorithm in [4] is much suitable for this task, where the
parameters of camera calibration are calculated through
vanishing points which are also utilized in reconstruction
work.

To solve the reconstruction problem, normals for all the
pixels in the image are required, which is solved by se-
quential methods where normals for faces are calculated
through directions of lines and normals for lines are solved

via normals of known faces and the faces formed through
the center of camera and the lines in 3D space. Then we
can get the normals for all pixels in the single image. This
orientation map is utilized to get a depth map for all pix-
els, which is similar to photometric shapes from shading
techniques like [5] and [6]. Considering that the imple-
mented method is used for architecture with regular shape
in outdoor environment, some optimizations and simpli-
fications are conducted in the algorithm. This algorithm
will be explained in Section 3.

An overview of the following sections is as follows. In
section 2, we will introduce the background and related
work in 3D model reconstruction. In section 3, alogrithm-
s for camera calibration and reconstruction will be ex-
plained in detail. Then section 4 will show the result of
the experiment and analysis the result. The last section is
the conclusion.

2 Background & Related Work

In recent years, several researchers paid attention to
3D reconstructions with single view. Compared with
3D reconstruction with multi-views, like Furukawa et.al
[12], single-view reconstruction satisfies the requirements
where only one side of 3D model is necessary, such as city
planning, video game modeling for line-based scenes and
coarse panorama for film industry. Instead of generating
all points in 3D space, only reconstructing required points
greatly lower the computation and redundancy, making
the real-time generation possible. Also, single-view re-
construction is specially suitable for architecture designers
and graphic designers to get an easy access to 3D scene of
their designs.

For reconstruction from line drawings, as is mentioned
in [1], Kanade [7] reconstructed composites of shells
and sheets as belonging to the special class of “origami
world”. Huffman [8] used line intersections between con-
cave, convex and occluding intersections to detect object-
s. Horry et.al [9] exerted method to build piecewise pla-
nar reconstuction system for paintings and photograph-
s. These methods all require tremendous information
marked by users, which is restricted and not effective.



2ol

&

Figure 1: Steps for reconstruction. (1). cluster the lines in orthogonal directions and compute the directions. (2).
compute the normal for faces bounded by clustered lines. (3). compute the directions of lines on faces with computed
normals. (4). cluster the lines with the same direction of the line with new computed directions. (5). repeat step (3) to

compute normal for faces

Several researches have been conducted on reconstruc-
tion with point cloud analysis. Vesselman et.al [10] took
advantages of laser scanners to build point clouds for hard
detected structure, such as roof etc. Carr et.al [11] use
polyharmonic Radial Basis Functions to reconstruct s-
mooth, manifold surfaces from point-cloud data and to
repair incomplete meshes. These methods can relative-
ly improve the precision of reconstruction. However, the
time consuming and equipments required for these meth-
ods made the reconstruction complicated.

Inspired by reconstruction through line drawing, this
method use less information from user marks and build a
automatic system to extend the depth and normal informa-
tion from lines to faces and faces to lines. Proper simplifi-
cation and approximation lower the computation without
sacrificing the accuracy of reconstruction.

3 Proposed Approach

3.1 Camera Calibration

In this section, we will introduce the algorithm of camera
parameters approaching. Vanishing points corresponding
to three mutually orthogonal directions will be used to fig-
ure out the right parameters:

e the camera calibration matrix, denoted as K. Assume
that calibration matrix has zero skew.

e the rotation matrix R.

o the direction of translation 7. Considering that T is
related to the position of camera in 3D space, T is
set as zero vector, meaning that the center of camer-
a is set in the original point for the convenience of
reconstruction.

o the projecting matrix P.

Considering the points at infinity corresponding to the
direction of three orthogonal axis, we can get the equation
as follows:
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where [u;, v;] denotes the vanishing point x; of the ith di-
rection. Considering that 7 is set as zero vector, the equa-
tion can be written as:
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where [ug, vg] is denoted as x;. Owing to the orthonor-
mality of R, f can be recovered by x1, x2, z3 and zq as:

(1 — 20)(z2 — ) + f2=0
(3 — 20)(x3 — ) + f2 =0
(1 — 20)(x3 — m0) + f2 =0
Through the equation above, the relationship between
vanishing points can be expressed as:
(1 —x0)(x2 —x3) =0

Then according to Caprile and Torre [3], row normality
for R must be satisfied owing to the geometric interpreta-
tion. Thus, the following equation can be achieved:

/\%(ul - Uo) + )\%(Uz — UO) + /\%(Ug — Uo) =0

)\%(Ul — Uo) + )\%(Uz - UO) + )\g(ug - 'LL(J) =0
M+A+A=1

Then the parameter for each A can be calculated as:

(vo — v3)(u2 — u3) — (up — uz)(v2 — v3)

M= {0y~ vg) (w2 — ) — (ur — 113)(vz — v3)

Ao and A3 can be approached as the same method. Then
all the parameters acquired can be calculated.
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Figure 2: Visualization of computing line direction.

3.2 Single View Orientation Mapping

To clarify the process of reconstruction, Figure 1 shows
the steps of the reconstruction. The 2D view provides the
information of faces and lines in the scene which should
be recorded by users. Faces refer to a close region bound-
ed by several lines, denoted as f; € F' where F’ means the
set of faces, and lines can be expressed as the intersection
of faces or the connection of two points. For the optimiza-
tion, different from [1], lines formed through two faces
are denoted as [x € L where L means the set of lines, and
other lines denoted as [ € L. Normals for lines and faces
are denoted as d;, d;, and d.

To calculate the camera calibration, the vanishing points
of orthonogal directions should have been achieved by
users. In this case, the direction for these lines pass
through the vanishing points can be calculated as:

dy =R K tup;

where vp; is denoted as the ¢th vanishig point. In this
case, d; for three orthogonal directions have been calcu-
lated. Considering for the faces bounded by the lines with
the known direction, the normals for these faces can be
obtained as:

d = dh X d12

Thus, the normals for faces bounded via [ can be cal-
culated. Given the orientation of face normals, lines [x
bounding the faces with known normal can be computed.
To make a clear clarifying, Figure 3.2 shows how this step
works. First, the projected view should be set in the 3D
space, where the center of the camera, lines formed by t-
wo points in projected view, called /., and the 3D object
in 3D space are in the same plate, denoted as f.. Owing
that [, can be formed as the intersection of f, and anoth-
er face with the known normal, the direction of [, can be
expressed as:

dl7r =d Fr X d f

So the mission is to compute dy . Considering that
points in 2D view is shaped like z;[u;, v;, 1], where z; is

a free variable, it is unable to get the accurate position
for this point in 3D space after the rotation. However, all
the possible positions should be in a line pass through the
camera and the center of the camera is set to original point,
which means that the direction of this line is the same as
the point. In this case, after the normalization, the direc-
tion of two lines bounding f, can be achieved. Then the
normal of f; can be computed. Then the directions for /x
can be calculated.

The algorithm should be functioned until all the nor-
mals for lines and faces are achieved.

3.3 Reconstruction

Given the normal of all pixels, next step is to compute
the depth of each pixels. In [1], the authors provided a
non-convex method and then several optimizations are ap-
plied to ease the method. In this section, an easier ap-
plied method will be given. Considering that all the pixels
in 2D images are connected, if the depth of one pixel is
set, all other points can be calculated through this point
and breadth-first search (BFS) can be exerted to achieve
the depth of all the pixels. The following three situations
should be taken into consideration.

e Face to face The depth-known pixel belongs to the
same face as the target pixel. In this case, normal
of these two points should be the same. Considering
the normal of the face and the direction of these two
points should be perpendicular, the following equa-
tion can be written:

df (P1 - PQ) =0
where P; and P, are the two points in 3D space.

e Face to line The target pixel is in a line [* belonging
to both two faces. In this case, the normal of this
pixel will be considered as the depth-known pixel,
which means that the direction of these two points in
3D space should be perpendicular with the normal of
face where the depth-known pixel is set.

e Line to face The target pixel is in a face and the depth-
known pixel is in a line. This method is the same as
face to line method. The only difference is the normal
of face should be that the target pixel belongs to.

To implement the reconstruction, the influence of the
free variable 2z should be taken into consideration. Con-
sidering that one 3D point is rotated by matrix R and vec-
tor T, denoted as [z/, y'2’], then the relationship between
the projection pixel and rotated points can be written as
follows:



Figure 3: Result of reconstruction. The first image is the single-view image. Then the second image shows the normal
of all pixels in the object, where the color for each pixel is normalized through normal vector sphere. The third image

is the reconstructed 3D object.

T f 0 wgl [«
yl =10 f wl |¥
z 0 0 1 z

We can transform this equation as follows:
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Thus, the reconstruction period can be expressed as:
P=2Rlp

where p means the position of pixels in the image and P
means the 3D point reprojected through p. In this case,
taking the reconstruction equation into account, we can
achieve the relationship between two pixels in 3D space:

di(#1R'p1 — 4R py) = 0

’ /deIp2
R = 2 i
de P1

where p; is the target pixel and 2z is the depth that we
need to compute, and p), is the depth-known pixel and z}
is the calculated depth. In this case, we can calculate the
depth of all the pixels in the image.

4 Experimental Results

4.1 Implementation Details

To successfully reconstruct the 3D model, several param-
eters are required from users. First, we need users to mark

the outlines and faces of the model. Then, cluster the lines
in 3 orthogonal directions. After obtaining the necessary
information, we can use the clustered lines to generate
corresponding vanishing points and calculate camera cal-
ibration. To minimize the deviation, RANSAC method is
used to generate vanishing points. Then, marked lines and
faces will be used to check which face or line one pixel
should belong to. Next, we randomly select one pixel in
one face, reproject it into 3D space and initialize the depth
to 100. After that, all the pixels near around this pixel will
be computed. When all the points belonging to a line or a
face have been calculated, the process will stop.

4.2 Experiment Result and Analysis

Figure 4: Rotation of the reconstructed 3D model. (1).
Deviations from users’ mark and pixel-wise method lead
to the margine and skew of some shapes. (2). It is reason-
able that points occluded by the model, which is invisible
in the single view, can not be learned and reconstructed

The result can be found in Figure 3.2. As can be seen,



all the faces with the same color share the same normal,
and the reconstructed 3D objects present precise architec-
ture of the models. Besides, the time-consuming is accept-
able, where reconstructing one model with 256076 pixels
takes around 72 seconds with Intel i5 2.3 GHz CPU.

Though the performance of reconstruction is satisfying
and effective, however, some deviations still occur. The
rotated model of the 3D model can be seen in Figure 4.2.
There are several reasons for these errors. First, devia-
tions from hand-craft marks to some extent bring errors to
the computation, which leads to the skew of some shapes.
Besides, the uniform sampling in the image plane grid will
cause a non-uniform sampling in 3D space.

4.3 Further Work

In the future, we will pay more attention to solving the
diviation from hand-craft marks and margins from pixel-
wise method. First, machine learning and convolutional
neural network would be used to develop the end-to-end
model for framework extraction and reconstruction. Nex-
t, we will utilize verticle and lines to reconstruct the 3D
model, where we can compute the mean value of inter-
sected points to avoid margins between shapes. Then we
will map the texture to the 3D model and evaluate the per-
formance of texture-mapped models.

5 Conclusion

In this paper, we implement a 3D model reconstruction
method through single view and do some optimization-
s on this method. Vanishing points are used to compute
the camera calibration parameters and 3 orthogonal direc-
tions. Then we use the calculated directions from lines
and normals faces to compute the unknown directions for
lines and normals for faces. Next, we initialize the depth
for one point and use breadth-first search method to com-
pute all the depth of pixels belonging to lines or faces.

For future work, we will use machine learning and deep
learning method to optimize the deviations from hand-
craft marks and margins between shapes. Besides, an end-
to-end model will be trained for framework extraction and
model reconstruction.
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